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6. Compute the coherence amplitude and phase:
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Patterson et. al. (1981) showed that N4 and S< are better correlated
over vertiCal Scales of 30 meters or more. This calculation of cross j

coherence between simultaneous profiles of N and S¢ was intended to
investigate the posszbllzt of a %imltlng vertical length scale below
which the correlation of N and S$< is small or zero, and above which 3

the correlatlon is good. On the basis of a limited data set (9 YVETTE
groflles) N2 and SZ appear in general to be well correlated at wave-

engths larger than about 5-10 meters, except in the presence of large
vertical geostrophic shear. These results offer some further evidence
that levels of shear activity may be inferred from stratification at
scales down to about 10 meters.c

SR AT S A

i

s TN S PRI R e
oo
I

v,
>“.A-A
{
4.

oom” L ASSIFIZATIEN OF a1t BalErune~ N Paipeo@y
(14400 Tha SN 4NN Y 3 TRoli en ¢




A T i

) COHERENCE BETWEEN
STRATIFICATION AND SHEAR IN THE
UPPER OCEAN

SAI-82-614-WA

September 1982

Prepared by:

David M. Rubenstein
Fred C. Newman
Richard Lambert, Jr.

Prepared for:

Ocean Measurements Program
¢ Naval Ocean Research and
. Development Activity

’ Code 541
: . NSTL Station
‘ Bay St. Louis, MS 39529

Contract # N00014-81-C~-0075

SCIENCE APPLICATIONS, INC.

1710 Goodridge Drive
P.O. Box 1303
McLean, VA 22102
(703) 821-4300

e

[Tttt yop ey~ —n




TABLE OF CONTENTS

; Section Page
¥ 1 INTRODUCTION L I A A A A O I I I I I S A A R R P A AP A A 1-1

2 N2 - S2 COHERENCE: METHOD OF COMPUTATION ...... 2-1

3 RESULTS AND DISCUSSION ® 008 8 0 6 000 H s SO S SNt oS eEs 3‘1

REFERENCES ® © 6 5 6 00000 000008000808 0E NP ORETISOE QS R“

L

-,
A A I

ii

PO L gy 2% 1 Qo - e~ ¢ e o




LIST OF FIGURES

¥ Figure Page
E 1.1 Profiles of (a) Brunt-vaisala freguency sguared,

& N2; (b) vertical shear squared, S?%; and (c)

3 logyg(Ri), where Ri = N2/s?, for YVETTE

o Station 8 in the Sargasso Sea. The vertical

§ line in (¢) is at Ri = 0.25. The dotted lines

are at 135 and 250 dbars. From Patterson
e—ta—IO (1981) ® O 8 8 0 & 5 0 0 ¢ OO 0 0SS GO P SO S L PO OO S e 1-3

201 POSitiOhS Of YVETTE Stations EEE R R Y 2-3
3.1 Coherence amplitude and phase spectra for

YVETTE Station 5. The dashed line is the

level of significance at 90% confidence for

coherence amplitude. 95% confidence limits

on phase are i 9. R R EEE R R WIS BN B A I A SN W 3-2
3.2 As in Figure 3.1, but for YVETTE Station 8 ,.... 3-2
3.3 As in Figure 3.1, but for YVETTE Station 9 ..... 3-3

3.4 As in Figure 3.1, but for YVETTE Station 10 .... 3-3

3.5 As in Figure 3.1, but for YVETTE Station 11 .... 3-4

3.6 As in Figure 3.1, but for YVETTE Station 12 ,... 3-4

3.7 As in Pigure 3.1, but for YVETTE Station 18 .... 3-5

T

S A 3.8 As in Figure 3.1, but for YVETTE Station 21 .... 3-5

3.9 As in Figure 3.1, but for YVETTE Station 23 .... 3-6




Section 1
INTRODUCTION

L o It has been well documented in recent years that

stratification and shear in the ocean are often highly inter-
dependent. A number of mechanisms are known to be respon-
sible for this interdependence, including interleaving,
internal waves, and instabilities such as double diffusion
and breaking internal waves. FPor example, Eriksen (1978)
documented the effects of breaking internal waves on the
relationship between shear squared (s?) and Vaisala frequency
squared (N2). His scatter plots of N? and S2 computed over a
vertical interval of 6.3 m show the limiting Richardson
number Ri = N2/S2 to be about 1/4. Shear instability, there-
fore, seems to bound S? to values less than the local value
of 4N2, ‘

LT WA T i i VR O )

Eriksen's observations show that Richardson number
approaches 1/4 rather infreguently. Internal waves are a
possible mechanism for the apparent correlation between 52
and N2 when Ri > 1/4. Johnson and Sanford (1980) showed that
) an anisotropic internal wave field superimposed on a vertical
temperature gradient resulted in significant coherence
between vertical shear and temperature gradient. WKB scaling
arguments suggest that, at least in the deep ocean, the shear

) due to linear internal waves behaves as
s? « N3,
> Observations made by the free-fall profiler YVETTE below the
seasonal thermocline tend to support this proportionality.




In the strongly stratified seasonal thermocline, the shear
behaves more nearly as

sz « N‘2
{Grabowski, 1980).

The similarity between profiles of N2 and 52 was
first pointed out by Simpson (1975). Figure 1.1 shows
profiles of N?, s2, and Ri from the free-fall shear profiler
YVETTE. In the seasonal thermocline (between the dashed
lines), and to a lesser extent bhelow the seasonal thermo-
cline, Ri 1is 1limited by the value 1/4. The similarity
between the profiles of N? and S? is immediately obvious.

In Patterson et al. (1981), we presented linear
cross-correlation coefficients' computed between N2 and s?,
for different portions of an YVETTE profile. We showed that
smoothing the profiles of N2 and S2 generally improves corre-
lations. The implication is that N2 and S2? are better corre-
lated over 1long vertical 1length scales than over short
scales. This calculation led to the question of whether
there is a limiting length scale, above which N2 and S§? are
well correlated, and below which the correlation is poor. We
anticipated that a calculation of coherence between N? and s?
would provide a more definitive answer than simply varying
the smoothing of the cross correlation. Thus we tried the
coherence calculation on nine different YVETTE profiles.
This technical note describes the results of that brief
investigation.

In Section 2 we present an outline of the method
used to compute coherence. In Section 3 we present the
results and a brief discussion,

1-2
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Section 2
N2 -~ S? COHERENCE: METHOD OF COMPUTATION

The locations of the nine stations for which coher-
ence spectra were computed are listed in Table 2.1 and shown
in Figure 2.1. The data used were from the depth intervals
below the mixing layer, and included both the strongly strat-
ified seasonal thermocline anrd the more weakly stratified
layers below. The data were sampled at approximately 1 meter
intervals. Sixteen meters was chosen as the longest wave-
length of interest, and thus each station was divided into
records of 16 samples (approximately 16 meters) long. The
number of non-overlapping 16 sample records in a given
station is denoted by the integer L.

We next outline the method used for computing
coherence between N? and S2. Dpata points in the time series

2
of N2 and s? are denoted Nj and S§ respectively.

1. Truncate the original station data records to a
length M, such that

M= LJ,
where J is a power of two, and L is the integer
defined above, We then have data records Nj
and 85 where j = 1,2,...,M.

2. Subtract the mean from each of these records.

3. Divide the station data record into 2L - 1
overlapping intervals, Apply a cosine taper

2-1
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» Table 2.1
YVETTE STATIONSI
® Station Time Istitude Longitude
Number (@4T) Date ) ) Comment
S5 1842 5 Nov. 75 32°19¢ 64°34" Near Bermuda
8 0225 8 Nov. 73 35°00" 66°30' Sargasso Sea
[ ] ° 1218 " " " "
10 1814 9 Nov. 75 38°09" 62°06" Gulf Stream
11 0036 10 Nov. 7 38°05!' 88°03" "
12 1312 " 38°15! 88°07' "
] 18 —_ 7 May 77 22°47! 70°43' Edze of thermocline eddy
21 —_ 9 May 77 22°27 70°57'  Cepnter of thermocline eddy
23 — 16 May 77 36°24' - 67°36' Outer part of GSR2
]
¢
| ]

1 Adapted from Lambert et al. (1980)
’ 2 Gulf Stream Ring
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Figure 2.1. Positions of YVETTE stations
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(Hanning) window to the data in each of these
intervals.

4. Compute the complex valued Fast Fourier Trans-
forms:

J=-1 .
<2 2 2mjn
Nn = z Nj exp (.1_.%_)

J=-1 .

g) = ) s2 exp (_i_z_ag_n_)

n s - 3 J
j=0

fjgr eac%- of the overlapping intervals. Here

Nn and sn denote spectral coefficients.

5. Compute the autospectra (Gy, Ggi, cospectra
(P) and guadrature spectra (Q):

ey - 2 R
Gs(fn) = gg ‘gz‘z

- 7\
P(f. ) = -3% (Re;?‘Regz + ImN;ImSS':)

o(f,) = 2h (Rel;?‘ImS/z - Im!:ERe;Z) '

. . . n
where h is the sampling interval and fn * %3

for n= 0,1,2,...,%-1.

2~-4
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Compute the coherence amplitude and phase:

1/2
<p(fn)>2 + <Q(fn)>2
c{f,) = L EL B 6L, D

(f ) t (-<Q(fnj>>
¢ = arctan ’
n <PLEnI>

where the angled brackets indicate averages
over the 2L~1 autospectra, cospectra, or quad-
rature spectra.

when coherence 1is computed, an implicit
assumption is made, namely, that the relation-
ship N2 and 8?2 is linear. The coherence
amplitude is a measure of the correlation
between N2 and S? in each frequency band.

S AR "
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Section 3
RESULTS AND DISCUSSION

The coherence and phase spectra for the nine
stations are shown in Figures 3.1 - 3.9. Each coherence
spectrum was computed with L ~ 30 indicating approximately 60
degrees of freedom. The level of significance at 90 percent
confidence, determined according to Koopmans (1974), is
denoted by a dashed line in each figure. The point at 0 cpm
can be interpreted as the coherence at wavelengths of 16 m
(the total record length). The range covered by this
analysis is thus about 16 m to 2 m.

For all but Station 12, the phase is stable and
near zero in the region of high coherence confirming that
spatial fluctuations in N2 and s2? are synchronized at scales
longer than 4-10 meters. This is consistent with the
improvement in cross-correlation between N? and S? profiles
reported by Patterson et. al. (1980) when the profiles were
first low pass filtered with a triangular weighting function
of 5 meter half-width (approximate wavelength cutoff of 10

meters).

The results are not unambiguous. Station 5 and 8
show very high coherence (~ 0.7 - 0.8) at small wavenumbers
with a sharp drop at wavenumbers above about 0.2 cpm.
Station 9 shows significant coherence (but with an amplitude
of only about 0.4) and with a drop at wavenumbers above 0.1
cpm. Stations 5, 8, and 9 were all made in almost the same
location in the central Sargasso Sea. Station 10 (in the
Gulf Stream) closely resembles Station 9. However, Stations
11 and 12, also from the Gulf Stream, show insignificant

3-1
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coherence at small wavenumbers with significant coherence
only between about 0.1 and 0.2 cpm, in sharp contrast with
Station 10.

Stations 18 and 21 are from the same location, near
the Bahamas, Both exhibit similar coherence properties,
namely, moderately high coherence (0.65) at small wave~
numbers, with sharp drops in coherence below 0.1 cpm (Station
18) and 0.18 cpm (Station 21). The coherence values from
Station 23 (near the edge of a Gulf Stream Ring) at small
wavenumbers are not significant.

There is an overall trend that suggests that small
wavenumber coherence is higher in regions of relatively low
geostrophic shear. However, the wavenumber above which the
coherence becomes insignificant is not ,well~determined in any
case., The best that can be said is that it occurs somewhere
between 0.1 and 0.25 cpm.

In summary, on the basis of analysis of a very few
profiles, N2 and §2 appear in general to be well correlated
at wavenumbers smaller than about 0.1-0.2 cpm, except in the
presence of large vertical geostrophic shear. Profiles
obtained in regions of large vertical geostrophic shear show
no significant c¢oherence at the smallest wavenumbers
addressed in this analysis (~ 0.06 cpm). In contrast, the
results of Patterson et. al. (1980) suggest that such
profiles (e.g., Station 12) are well correlated at longer
wavelengths (smaller wavenumbers). One station (Station 10),
obtained in the Gulf Stream, does exhibit coherence, in the
present analysis, at wavelengths of 16 meters and is thus an
exception., These results do offer some further evidence that
levels of shear activity may be inferred from stratification
at scales down to about 10 meters,

3-7
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